[ << Musical notation ] | [Top][Contents][Index][ ? ] | [ Specialist notation >> ] | ||
[ < Showing melody rhythms ] | [ Up : Rhythms ] | [ Automatic beams > ] |
1.2.4 Beams
Automatic beams | ||
Setting automatic beam behavior | ||
Manual beams | ||
Feathered beams |
[ << Musical notation ] | [Top][Contents][Index][ ? ] | [ Specialist notation >> ] | ||
[ < Beams ] | [ Up : Beams ] | [ Setting automatic beam behavior > ] |
Automatic beams
By default, beams are inserted automatically:
\relative c'' { \time 2/4 c8 c c c \time 6/8 c8 c c c8. c16 c8 }
If these automatic decisions are not satisfactory, beaming can be entered explicitly; see Manual beams. Beams must be entered manually if beams are to be extended over rests.
If automatic beaming is not required, it may be turned off with
\autoBeamOff
and on with \autoBeamOn
:
\relative c' { c4 c8 c8. c16 c8. c16 c8 \autoBeamOff c4 c8 c8. c16 c8. \autoBeamOn c16 c8 }
Note: If beams are used to indicate melismata in songs, then
automatic beaming should be switched off with \autoBeamOff
and the beams indicated manually. Using \partcombine
with
\autoBeamOff
can produce unintended results. See the
snippets for more information.
Beaming patterns that differ from the automatic defaults can be created; see Setting automatic beam behavior.
Predefined commands
\autoBeamOff
,
\autoBeamOn
.
Selected Snippets
Beams across line breaks
Line breaks are normally forbidden when beams cross bar lines. This behavior can be changed as shown:
\relative c'' { \override Beam.breakable = ##t c8 c[ c] c[ c] c[ c] c[ \break c8] c[ c] c[ c] c[ c] c }
Changing beam knee gap
Kneed beams are inserted automatically when a large gap is detected
between the note heads. This behavior can be tuned through the
auto-knee-gap
property. A kneed beam is drawn if the gap is
larger than the value of auto-knee-gap
plus the width of the
beam object (which depends on the duration of the notes and the slope
of the beam). By default auto-knee-gap
is set to 5.5 staff
spaces.
{ f8 f''8 f8 f''8 \override Beam.auto-knee-gap = #6 f8 f''8 f8 f''8 }
Partcombine and autoBeamOff
The function of \autoBeamOff
when used with
\partcombine
can be difficult to understand.
It may be preferable to use
\set Staff.autoBeaming = ##f
instead, to ensure that autobeaming will be turned off for the entire staff.
\partcombine
apparently works with 3 voices – stem up single,
stem down single, stem up combined.
An \autoBeamOff
call in the first argument to partcombine will
apply to the voice that is active at the time the call is processed,
either stem up single or stem up combined. An \autoBeamOff
call
in the second argument will apply to the voice that is stem down single.
In order to use \autoBeamOff
to stop all autobeaming when used
with \partcombine
, it will be necessary to use three calls to
\autoBeamOff
.
{ %\set Staff.autoBeaming = ##f % turns off all autobeaming \partcombine { \autoBeamOff % applies to split up stems \repeat unfold 4 a'16 %\autoBeamOff % applies to combined up stems \repeat unfold 4 a'8 \repeat unfold 4 a'16 } { \autoBeamOff % applies to down stems \repeat unfold 4 f'8 \repeat unfold 8 f'16 | } }
See also
Notation Reference: Manual beams, Setting automatic beam behavior.
Installed Files: ‘scm/auto-beam.scm’.
Snippets: Rhythms.
Internals Reference: Auto_beam_engraver, Beam_engraver, Beam, BeamEvent, BeamForbidEvent, beam-interface, unbreakable-spanner-interface.
Known issues and warnings
The properties of a beam are determined at the start of its construction and any additional beam-property changes that occur before the beam has been completed will not take effect until the next, new beam starts.
[ << Musical notation ] | [Top][Contents][Index][ ? ] | [ Specialist notation >> ] | ||
[ < Automatic beams ] | [ Up : Beams ] | [ Manual beams > ] |
Setting automatic beam behavior
When automatic beaming is enabled, the placement of automatic beams
is determined by three context properties:
baseMoment
, beatStructure
, and beamExceptions
.
The default values of these variables may be overridden as described
below, or alternatively the default values themselves may be changed
as explained in Time signature.
If a beamExceptions
rule is defined for the time signature in
force, that rule alone is used to determine the beam placement; the
values of baseMoment
and beatStructure
are ignored.
If no beamExceptions
rule is defined for the time signature
in force, the beam placement is determined by the values of
baseMoment
and beatStructure
.
Beaming based on baseMoment
and beatStructure
By default, beamExceptions
rules are defined for most common
time signatures, so the beamExceptions
rules must be disabled
if automatic beaming is to be based on baseMoment
and
beatStructure
. The beamExceptions
rules are disabled
by
\set Timing.beamExceptions = #'()
When beamExceptions
is set to #'()
, either due to an
explicit setting or because no beamExceptions
rules are defined
internally for the time signature in force, the ending points for
beams are on beats as specified by the context properties
baseMoment
and beatStructure
. beatStructure
is
a scheme list that defines the length of each beat in the measure in
units of baseMoment
. By default, baseMoment
is one
over the denominator of the time signature. By default, each unit of
length baseMoment
is a single beat.
Note that there are separate beatStructure
and baseMoment
values for each time signature. Changes to these variables apply only
to the time signature that is currently in force, hence those changes
must be placed after the \time
command which starts a new time
signature section, not before it. New values given to a particular
time signature are retained and reinstated whenever that time signature
is re-established.
\relative c'' { \time 5/16 c16^"default" c c c c | % beamExceptions are unlikely to be defined for 5/16 time, % but let's disable them anyway to be sure \set Timing.beamExceptions = #'() \set Timing.beatStructure = 2,3 c16^"(2+3)" c c c c | \set Timing.beatStructure = 3,2 c16^"(3+2)" c c c c | }
\relative { \time 4/4 a'8^"default" a a a a a a a % Disable beamExceptions because they are definitely % defined for 4/4 time \set Timing.beamExceptions = #'() \set Timing.baseMoment = #(ly:make-moment 1/4) \set Timing.beatStructure = 1,1,1,1 a8^"changed" a a a a a a a }
Beam setting changes can be limited to specific contexts. If no setting is included in a lower-level context, the setting of the enclosing context will apply.
\new Staff { \time 7/8 % No need to disable beamExceptions % as they are not defined for 7/8 time \set Staff.beatStructure = 2,3,2 << \new Voice = one { \relative { a'8 a a a a a a } } \new Voice = two { \relative { \voiceTwo \set Voice.beatStructure = 1,3,3 f'8 f f f f f f } } >> }
When multiple voices are used the Staff
context must be
specified if the beaming is to be applied to all voices in the
staff:
\time 7/8 % rhythm 3-1-1-2 % Change applied to Voice by default -- does not work correctly % Because of autogenerated voices, all beating will % be at baseMoment (1 . 8) \set beatStructure = 3,1,1,2 << \relative {a'8 a a a16 a a a a8 a} \\ \relative {f'4. f8 f f f} >> % Works correctly with context Staff specified \set Staff.beatStructure = 3,1,1,2 << \relative {a'8 a a a16 a a a a8 a} \\ \relative {f'4. f8 f f f} >>
The value of baseMoment
can be adjusted to change
the beaming behavior, if desired. When this is done,
the value of beatStructure
must be set to be
compatible with the new value of baseMoment
.
\time 5/8 % No need to disable beamExceptions % as they are not defined for 5/8 time \set Timing.baseMoment = #(ly:make-moment 1/16) \set Timing.beatStructure = 7,3 \repeat unfold 10 { a'16 }
baseMoment
is a moment; a unit of musical duration. A
quantity of type moment is created by the scheme function
ly:make-moment
. For more information about this function,
see Time administration.
By default baseMoment
is set to one over the denominator of
the time signature. Any exceptions to this default can be found in
‘scm/time-signature-settings.scm’.
Beaming based on beamExceptions
Special autobeaming rules (other than ending a beam on a beat)
are defined in the beamExceptions
property.
The value for beamExceptions
, a somewhat complex Scheme
data structure, is easiest generated with the
\beamExceptions
function. This function is given one or
more manually beamed measure-length rhythmic patterns (measures
have to be separated by a bar check |
since the
function has no other way to discern the measure length). Here is
a simple example:
\relative c'' { \time 3/16 \set Timing.beatStructure = 2,1 \set Timing.beamExceptions = \beamExceptions { 32[ 32] 32[ 32] 32[ 32] } c16 c c | \repeat unfold 6 { c32 } | }
Note: A beamExceptions
value must be complete
exceptions list. That is, every exception that should be applied
must be included in the setting. It is not possible to add, remove,
or change only one of the exceptions. While this may seem cumbersome,
it means that the current beaming settings need not be known in order
to specify a new beaming pattern.
When the time signature is changed, default values of
Timing.baseMoment
, Timing.beatStructure
,
and Timing.beamExceptions
are set. Setting the time signature
will reset the automatic beaming settings for the Timing
context to the default behavior.
\relative a' { \time 6/8 \repeat unfold 6 { a8 } % group (4 + 2) \set Timing.beatStructure = 4,2 \repeat unfold 6 { a8 } % go back to default behavior \time 6/8 \repeat unfold 6 { a8 } }
The default automatic beaming settings for a time signature are determined in ‘scm/time-signature-settings.scm’. Changing the default automatic beaming settings for a time signature is described in Time signature.
Many automatic beaming settings for a time signature contain an
entry for beamExceptions
. For example, 4/4 time tries to
beam the measure in two if there are only eighth notes. The
beamExceptions
rule can override the beatStructure
setting
if beamExceptions
is not reset.
\time 4/4 \set Timing.baseMoment = #(ly:make-moment 1/8) \set Timing.beatStructure = 3,3,2 % This won't beam (3 3 2) because of beamExceptions \repeat unfold 8 {c''8} | % This will beam (3 3 2) because we clear beamExceptions \set Timing.beamExceptions = #'() \repeat unfold 8 {c''8}
In a similar fashion, eighth notes in 3/4 time are beamed as a full
measure by default. To beam eighth notes in 3/4 time on the beat,
reset beamExceptions
.
\time 3/4 % by default we beam in (6) due to beamExceptions \repeat unfold 6 {a'8} | % This will beam (1 1 1) due to default baseMoment and beatStructure \set Timing.beamExceptions = #'() \repeat unfold 6 {a'8}
In engraving from the Romantic and Classical periods,
beams often begin midway through the measure in 3/4 time,
but modern practice is to avoid the false impression of 6/8 time
(see Gould, p. 153). Similar situations arise in 3/8 time.
This behavior is controlled by the context property beamHalfMeasure
,
which has effect only in time signatures with 3 in the numerator:
\relative a' { \time 3/4 r4. a8 a a | \set Timing.beamHalfMeasure = ##f r4. a8 a a | }
How automatic beaming works
When automatic beaming is enabled, the placement of automatic beams
is determined by the context properties
baseMoment
, beatStructure
, and beamExceptions
.
The following rules, in order of priority, apply when determining the appearance of beams:
-
If a manual beam is specified with
[…]
set the beam as specified, otherwise -
if a beam-ending rule is defined in
beamExceptions
for the beam-type, use it to determine the valid places where beams may end, otherwise -
if a beam-ending rule is defined in
beamExceptions
for a longer beam-type, use it to determine the valid places where beams may end, otherwise -
use the values of
baseMoment
andbeatStructure
to determine the ends of the beats in the measure, and end beams at the end of beats.
In the rules above, the beam-type is the duration of the shortest note in the beamed group.
The default beaming rules can be found in ‘scm/time-signature-settings.scm’.
Selected Snippets
Subdividing beams
The beams of consecutive 16th (or shorter) notes are, by default, not
subdivided. That is, the three (or more) beams stretch unbroken over
entire groups of notes. This behavior can be modified to subdivide the
beams into sub-groups by setting the property subdivideBeams
.
When set, multiple beams will be subdivided at intervals defined by the
current value of baseMoment
by reducing the multiple beams to
the number of beams that indicates the metric value of the subdivision.
If the group following the division is shorter than the current metric
value (usually because the beam is incomplete) the number of beams
reflects the longest possible subdivision group. However, if there is
only one note left after the division this restriction isn’t applied.
Note that baseMoment
defaults to one over the denominator of the
current time signature if not set explicitly. It must be set to a
fraction giving the duration of the beam sub-group using the
ly:make-moment
function, as shown in this snippet. Also, when
baseMoment
is changed, beatStructure
should also be
changed to match the new baseMoment
:
\relative c'' { c32[ c c c c c c c] \set subdivideBeams = ##t c32[ c c c c c c c] % Set beam sub-group length to an eighth note \set baseMoment = #(ly:make-moment 1/8) \set beatStructure = 2,2,2,2 c32[ c c c c c c c] % Set beam sub-group length to a sixteenth note \set baseMoment = #(ly:make-moment 1/16) \set beatStructure = 4,4,4,4 c32[ c c c c c c c] % Shorten beam by 1/32 \set baseMoment = #(ly:make-moment 1/8) \set beatStructure = 2,2,2,2 c32[ c c c c c c] r32 % Shorten beam by 3/32 \set baseMoment = #(ly:make-moment 1/8) \set beatStructure = 2,2,2,2 c32[ c c c c] r16. r2 }
Strict beat beaming
Beamlets can be set to point in the direction of the beat to which they belong. The first beam avoids sticking out flags (the default); the second beam strictly follows the beat.
\relative c'' { \time 6/8 a8. a16 a a \set strictBeatBeaming = ##t a8. a16 a a }
Conducting signs measure grouping signs
Beat grouping within a measure is controlled by the context property
beatStructure
. Values of beatStructure
are established
for many time signatures in scm/time-signature-settings.scm
.
Values of beatStructure
can be changed or set with \set
.
Alternatively, \time
can be used to both set the time signature
and establish the beat structure. For this, you specify the internal
grouping of beats in a measure as a list of numbers (in Scheme syntax)
before the time signature.
\time
applies to the Timing
context, so it will not
reset values of beatStructure
or baseMoment
that are set
in other lower-level contexts, such as Voice
.
If the Measure_grouping_engraver
is included in one of the
display contexts, measure grouping signs will be created. Such signs
ease reading rhythmically complex modern music. In the example, the 9/8
measure is grouped in two different patterns using the two different
methods, while the 5/8 measure is grouped according to the default
setting in scm/time-signature-settings.scm
:
\score { \new Voice \relative c'' { \time 9/8 g8 g d d g g a( bes g) | \set Timing.beatStructure = 2,2,2,3 g8 g d d g g a( bes g) | \time 4,5 9/8 g8 g d d g g a( bes g) | \time 5/8 a4. g4 | } \layout { \context { \Staff \consists "Measure_grouping_engraver" } } }
Beam endings in Score context
Beam-ending rules specified in the Score
context apply to all
staves, but can be modified at both Staff
and Voice
levels:
\relative c'' { \time 5/4 % Set default beaming for all staves \set Score.baseMoment = #(ly:make-moment 1/8) \set Score.beatStructure = 3,4,3 << \new Staff { c8 c c c c c c c c c } \new Staff { % Modify beaming for just this staff \set Staff.beatStructure = 6,4 c8 c c c c c c c c c } \new Staff { % Inherit beaming from Score context << { \voiceOne c8 c c c c c c c c c } % Modify beaming for this voice only \new Voice { \voiceTwo \set Voice.beatStructure = 6,4 a8 a a a a a a a a a } >> } >> }
See also
Notation Reference: Time signature.
Installed Files: ‘scm/time-signature-settings.scm’.
Snippets: Rhythms.
Internals Reference: Auto_beam_engraver, Beam, BeamForbidEvent, beam-interface.
Known issues and warnings
If a score ends while an automatic beam has not been ended and is
still accepting notes, this last beam will not be typeset at all.
The same holds for polyphonic voices, entered with
<< … \\ … >>
. If a polyphonic voice ends while an
automatic beam is still accepting notes, it is not typeset.
The workaround for these problems is to manually beam the last
beam in the voice or score.
By default, the Timing
translator is aliased to the
Score
context. This means that setting the time signature
in one staff will affect the beaming of the other staves as well.
Thus, a time signature setting in a later staff will reset custom
beaming that was set in an earlier staff.
One way to avoid this problem is to set the time signature
in only one staff.
<< \new Staff { \time 3/4 \set Timing.baseMoment = #(ly:make-moment 1/8) \set Timing.beatStructure = 1,5 \set Timing.beamExceptions = #'() \repeat unfold 6 { a'8 } } \new Staff { \repeat unfold 6 { a'8 } } >>
The default beam settings for the time signature can also be changed, so that the desired beaming will always be used. Changes in automatic beaming settings for a time signature are described in Time signature.
<< \new Staff { \overrideTimeSignatureSettings 3/4 % timeSignatureFraction 1/8 % baseMomentFraction 1,5 % beatStructure #'() % beamExceptions \time 3/4 \repeat unfold 6 { a'8 } } \new Staff { \time 3/4 \repeat unfold 6 { a'8 } } >>
[ << Musical notation ] | [Top][Contents][Index][ ? ] | [ Specialist notation >> ] | ||
[ < Setting automatic beam behavior ] | [ Up : Beams ] | [ Feathered beams > ] |
Manual beams
In some cases it may be necessary to override the automatic
beaming algorithm. For example, the autobeamer will not put beams
over rests or bar lines, and in choral scores the beaming is
often set to follow the meter of the lyrics rather than the
notes. Such beams can be specified manually by
marking the begin and end point with [
and ]
.
\relative { r4 r8[ g' a r] r g[ | a] r }
Beaming direction can be set manually using direction indicators:
\relative { c''8^[ d e] c,_[ d e f g] }
Individual notes may be marked with \noBeam
to prevent them
from being beamed:
\relative { \time 2/4 c''8 c\noBeam c c }
Grace note beams and normal note beams can occur simultaneously. Unbeamed grace notes are not put into normal note beams.
\relative { c''4 d8[ \grace { e32 d c d } e8] e[ e \grace { f16 } e8 e] }
Even more strict manual control with the beams can be achieved by
setting the properties stemLeftBeamCount
and
stemRightBeamCount
. They specify the number of beams to
draw on the left and right side, respectively, of the next note.
If either property is set, its value will be used only once, and
then it is erased. In this example, the last f
is printed
with only one beam on the left side, i.e., the eighth-note beam of
the group as a whole.
\relative a' { a8[ r16 f g a] a8[ r16 \set stemLeftBeamCount = #2 \set stemRightBeamCount = #1 f16 \set stemLeftBeamCount = #1 g16 a] }
Predefined commands
\noBeam
.
Selected Snippets
Flat flags and beam nibs
Flat flags on lone notes and beam nibs at the ends of beamed figures
are both possible with a combination of stemLeftBeamCount
,
stemRightBeamCount
and paired []
beam indicators.
For right-pointing flat flags on lone notes, use paired []
beam
indicators and set stemLeftBeamCount
to zero (see Example 1).
For left-pointing flat flags, set stemRightBeamCount
instead
(Example 2).
For right-pointing nibs at the end of a run of beamed notes, set
stemRightBeamCount
to a positive value. And for left-pointing
nibs at the start of a run of beamed notes, set
stemLeftBeamCount
instead (Example 3).
Sometimes it may make sense for a lone note surrounded by rests to
carry both a left- and right-pointing flat flag. Do this with paired
[]
beam indicators alone (Example 4).
(Note that \set stemLeftBeamCount
is always equivalent to
\once \set
. In other words, the beam count settings are not
“sticky”, so the pair of flat flags attached to the lone
16[]
in the last example have nothing to do with the
\set
two notes prior.)
\score { << % Example 1 \new RhythmicStaff { \set stemLeftBeamCount = #0 c16[] r8. } % Example 2 \new RhythmicStaff { r8. \set stemRightBeamCount = #0 16[] } % Example 3 \new RhythmicStaff { 16 16 \set stemRightBeamCount = #2 16 r r \set stemLeftBeamCount = #2 16 16 16 } % Example 4 \new RhythmicStaff { 16 16 \set stemRightBeamCount = #2 16 r16 16[] r16 \set stemLeftBeamCount = #2 16 16 } >> }
See also
Notation Reference: Direction and placement, Grace notes.
Snippets: Rhythms.
Internals Reference: Beam, BeamEvent, Beam_engraver, beam-interface, Stem_engraver.
[ << Musical notation ] | [Top][Contents][Index][ ? ] | [ Specialist notation >> ] | ||
[ < Manual beams ] | [ Up : Beams ] | [ Bars > ] |
Feathered beams
Feathered beams are used to indicate that a small group of notes
should be played at an increasing (or decreasing) tempo, without
changing the overall tempo of the piece. The extent of the
feathered beam must be indicated manually using [
and
]
, and the beam feathering is turned on by specifying a
direction to the Beam
property grow-direction
.
If the placement of the notes and the sound in the MIDI output is to
reflect the ritardando or accelerando indicated by the
feathered beam the notes must be grouped as a music expression delimited
by braces and preceded by a featherDurations
command which specifies
the ratio between the durations of the first and last notes in the
group.
The square brackets show the extent of the beam and the braces show which notes are to have their durations modified. Normally these would delimit the same group of notes, but this is not required: the two commands are independent.
In the following example the eight 16th notes occupy exactly the same time as a half note, but the first note is one half as long as the last one, with the intermediate notes gradually lengthening. The first four 32nd notes gradually speed up, while the last four 32nd notes are at a constant tempo.
\relative c' { \override Beam.grow-direction = #LEFT \featherDurations #(ly:make-moment 2/1) { c16[ c c c c c c c] } \override Beam.grow-direction = #RIGHT \featherDurations #(ly:make-moment 2/3) { c32[ d e f] } % revert to non-feathered beams \override Beam.grow-direction = #'() { g32[ a b c] } }
The spacing in the printed output represents the note durations only approximately, but the MIDI output is exact.
Predefined commands
\featherDurations
.
See also
Snippets: Rhythms.
Known issues and warnings
The \featherDurations
command only works with very short
music snippets, and when numbers in the fraction are small.
[ << Musical notation ] | [Top][Contents][Index][ ? ] | [ Specialist notation >> ] | ||
[ < Manual beams ] | [ Up : Beams ] | [ Bars > ] |
Más nyelvek: català, deutsch, español, français, italiano, 日本語.
About automatic language selection.